Research
Rodrigue is currently a PhD student in Computer Science. His thesis, entitled “Graph Theory Applied to the Risk Mapping of Leptospirosis in New Caledonia”, aims to integrate multi-source data (social, economic, demographic, environmental, animal, etc.) into attributed graph networks to extract knowledge and understand the spatio-temporal risk distribution of leptospirosis.
The thesis is divided into two major parts: the development of new analysis methods based on graph theory and the application of these methods to the risk mapping of leptospirosis. Regarding the application, the goal is to predict the contamination risk distribution, which will serve as a prevention tool for public health departments. Moreover, this thesis aims to precisely identify future risk areas as well as the factors promoting an increase in contamination risk.
Since the thesis is in the field of Computer Science, it makes possible to adapt the modeling to other epidemiological phenomena but also anthropogenic phenomena.
This thesis is under supervision of Prof. Nazha Selmaoui-Folcher, Full Professor in Computer Science at the University of New Caledonia and Prof. Philippe Fournier-Viger, Distinguished Professor in Computer Science at the Shenzhen University (China).
During this thesis, Rodrigue is giving classes to Bachelor students. His main courses involve Advanced programming in Python, Graph Theory, and Database management.
Publications #
[9] | Govan, R., Scherrer, R., Goarant, C., Cannet, A., Fournier-Viger, P., Selmaoui-Folcher, N. (2025, January). Cartographie du risque épidémiologique : Le défi des données déséquilibrées. In Revue des Nouvelles Technologies de l’Information, 25èmes Journées Francophones Extraction et Gestion des Connaissances, EGC 2025, vol. RNTI-E-41. (pp. 159-170). html bib |
[8] | Govan, R., Scherrer, R., Fougeron, B., Laporte-Magoni, C., Thibeaux, R., Genthon, P., Fournier-Viger, P., Goarant, C., Selmaoui-Folcher, N. (2025). Spatio-temporal risk prediction of leptospirosis: A machine-learning-based approach. PLOS Neglected Tropical Diseases, 19(1), e0012755. html bib |
[7] | Thibeaux, R., Genthon, P., Govan, R., Selmaoui-Folcher, N., Tramier, C., Kainiu, M., Soupé-Gilbert, M.-E., Wijesuriya, K., Goarant, C. (2024). Rainfall-driven resuspension of pathogenic Leptospira in a leptospirosis hotspot. Science of The Total Environment, 911, 168700. html bib |
[6] | Govan, R., Selmaoui-Folcher, N., Giannakos, A., Fournier-Viger, P. (2023). Co-location Pattern Mining Under the Spatial Structure Constraint. In: Strauss, C., Amagasa, T., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2023. Lecture Notes in Computer Science, vol 14146. Springer, Cham. html bib |
[5] | Govan, R., Selmaoui-Folcher, N., Giannakos, A., Fournier-Viger, P. (2023, July). Extraction de co-localisations sous contrainte de la structure spatiale. In CNIA 2023-Conférence Nationale en Intelligence Artificielle, PFIA (No. 53-61). html bib |
[4] | Tokotoko, J., Govan, R., Lemonnier, H., Selmaoui-Folcher, N. (2022). Multiscale and Multivariate Time Series Clustering: A New Approach. In: Ceci, M., Flesca, S., Masciari, E., Manco, G., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2022. Lecture Notes in Computer Science(), vol 13515. Springer, Cham. html bib |
[3] | Scherrer, R., Govan, R., Quiniou, T., Jauffrais, T., Lemonnier, H., Bonnet, S., & Selmaoui-Folcher, N. (2022). Real-Time Automatic Plankton Detection, Tracking and Classification on Raw Hologram. In International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics (pp. 25-39). Springer, Cham. html bib |
[2] | Scherrer, R., Govan, R., Quiniou, T., Jauffrais, T., Lemonnier, H., Bonnet, S., & Selmaoui-Folcher, N. (2021, November). Automatic Plankton Detection and Classification on Raw Hologram with a Single Deep Learning Architecture. In CIBB 2021 Computational Intelligence Methods for Bioinformatics and Biostatistics. html bib |
[1] | Tokotoko, J., Selmaoui-Folcher, N., Govan, R., Lemonnier, H. (2021). TSX-Means: An Optimal K Search Approach for Time Series Clustering. In: Strauss, C., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2021. Lecture Notes in Computer Science(), vol 12924. Springer, Cham. html bib |